New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements

نویسندگان

  • Qun Lin
  • Hung-Tsai Huang
  • Zi-Cai Li
چکیده

The paper explores new expansions of the eigenvalues for −∆u = λρu in S with Dirichlet boundary conditions by the bilinear element (denoted Q1) and three nonconforming elements, the rotated bilinear element (denoted Qrot 1 ), the extension of Q rot 1 (denoted EQ rot 1 ) and Wilson’s elements. The expansions indicate that Q1 and Qrot 1 provide upper bounds of the eigenvalues, and that EQrot 1 andWilson’s elements provide lower bounds of the eigenvalues. By extrapolation, the O(h4) convergence rate can be obtained, where h is the maximal boundary length of uniform rectangles. Numerical experiments are carried out to verify the theoretical analysis made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods

The aim of the paper is to introduce a new systematic method that can produce lower bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general conclusion herein is that if local approximation properties of nonconforming finite element spaces Vh are better than global continuity properties of Vh, corresponding methods will produce lower bounds for eigenvalu...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

A Posteriori Error Analysis for Nonconforming Approximation of Multiple Eigenvalues

In this paper we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, C. Padra, Appl. Numer. Math., 2012, for the approximation of Laplace eigenvalue problem with Crouzeix–Raviart non-conforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and ...

متن کامل

Stability and Convergence of Nonconforming /AJI Finite-Element Methods

The stability and convergence of nonconforming hp finite-element methods, in particular, the mortar finite-element method and its variants, are established based on a new stability measure for these methods. Using a generalized eigenvalue analysis, estimates for this measure are computed numerically. Our numerical results demonstrate that these nonconforming methods prove to be good candidates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008